報(bào) 告 人:汪彥 副教授
報(bào)告題目:Rainbow matchings for 3-partite 3-uniform hypergraphs
報(bào)告時(shí)間:2025年02月24日(周一)下午4:00
報(bào)告地點(diǎn):靜遠(yuǎn)樓1508會議室
主辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院、數(shù)學(xué)研究院、科學(xué)技術(shù)研究院
報(bào)告人簡介:
汪彥,上海交通大學(xué)數(shù)學(xué)科學(xué)學(xué)院副教授。2017年博士畢業(yè)于美國佐治亞理工學(xué)院,師從國際著名圖論專家郁星星教授。他獲得上海市海外高層次人才計(jì)劃,并主持國家重點(diǎn)研發(fā)計(jì)劃青年科學(xué)家項(xiàng)目,主要研究方向?yàn)閳D論,發(fā)表多篇高水平論文,與郁星星教授等合作證明了近四十年的Kelmans-Seymour猜想等。
報(bào)告摘要:
Let $m,n,r,s$ be nonnegative integers such that $n\ge m=3r+s$ and $1\leq s\leq 3$. Let
\[\delta(n,r,s)=\left\{\begin{array}{ll} n^2-(n-r)^2 &\text{if}\
s=1 , \\[7px]
n^2-(n-r+1)(n-r-1) &\text{if}\
s=2,\\[7px]
n^2 - (n-r)(n-r-1) &\text{if}\ s=3.
\end{array}\right.\]
We show that there exists a constant $n_0 > 0$ such that if $F_1,\ldots, F_n$ are 3-partite 3-graphs with $n\ge n_0$ vertices in each partition class and minimum vertex degree of $F_i$ is at least $\delta(n,r,s)+1$ for $i \in [n]$ then $\{F_1,\ldots,F_n\}$ admits a rainbow perfect matching. This generalizes a result of Lo and Markstr\om on the vertex degree threshold for the existence of perfect matchings in 3-partite 3-graphs. In this proof, we use a fractional rainbow matching theory obtained by \textit{Aharoni et al.} to find edge-disjoint fractional perfect matching.